Astrophysics Division
CEA Saclay

UMR Astrophysics Instrumentation Modelisation

picto-accueil Our research laboratories

Headlines

Aug 21st, 2024

Black holes suffocating galaxies?

More

Jul 14th, 2024

Delivery of the coronagraphic masks for the ELT's METIS instrument

More

More highlights

Seminars

More seminars

News

3rd Astro-COLIBRI multi-messenger astrophysics workshop 16/09/2024 - 20/09/2024

More

The launch date of SVOM is now official; it will be launched on June 24, 2024, from Xichang, China.

More

More news

picto 1 Research laboratories

Presentation

Department of Astrophysics (DAp) // UMR AIM

A major space laboratory

The Astrophysics Department, UMR AIM within IRFU, is one of the major space laboratories in France, at the European and international levels. In direct collaboration with CNES, which oversees the space activities of French laboratories, it is heavily involved in the space missions of ESA's Cosmic Vision scientific program, as well as in bilateral missions led by CNES.

The development of astrophysics at CEA began in partnership with CNES from its inception in the early 1960s. Astrophysics is a rapidly growing science due to its high potential for discoveries. Increasingly numerous and powerful instruments, both ground-based and satellite-based, allow us to probe the universe with enhanced angular resolution and sensitivity across the entire electromagnetic spectrum. At the same time, modeling, particularly through numerical simulations, is becoming increasingly important in astrophysics; astrophysical problems are often complex and involve other disciplines of physics. Astrophysics and other fields of physics enrich each other mutually.

Our scientific projects

picto 3Astrophysics

Magmist

Du milieu interstellaire diffus aux étoiles. 

From diffused interstellar medium to stars.

 

Comprendre la formation des étoiles reste l'un des plus grands défis de l'astronomie moderne. Dans ce domaine, les progrès ont été limités pour deux raisons principalement : 

  • l'énorme dynamique des échelles spatiales et temporelles pertinentes
  • la grande variété et de la non-linéarité des processus physiques impliqués dans la formation des étoiles.


Le but de ce projet est de fournir une image complète et cohérente du processus de formation des étoiles en suivant de manière autoconsistante l'évolution de la matière interstellaire depuis le gaz très diffus jusqu'aux proto-étoiles.


Ce projet poursuit deux objectifs :

  1. parvenir à une compréhension globale du processus de formation des étoiles, en particulier en élucidant le lien entre les propriétés physiques du milieu interstellaire à grande échelle et les caractéristiques des proto-étoiles, telles que leur masse, leur magnétisation et leur moment angulaire ; 
  2. fournir une meilleure compréhension de la structure, de la nature et du rôle du champ magnétique et de la turbulence des parties diffuses aux parties denses du milieu interstellaire.

Les moyens utilisés

Ceci sera réalisé en effectuant une série de simulations numériques magnétohydrodynamique (MHD*) lourdes avec un code de raffinement de maillage adaptatif tout en subdivisant le problème en trois étapes majeures, à savoir la formation de nuages moléculaires à grande échelle, la formation de noyaux de formation d'étoiles et l'effondrement des noyaux protostellaires. En particulier, l'impact du champ magnétique et les processus radiatifs seront traités de manière autoconsistante en utilisant des schémas appropriés.

A chaque étape, des comparaisons avec les modèles analytiques et les observations seront effectuées en utilisant des modèles existants ou en développant de nouveaux modèles et en calculant des observations synthétiques. Les résultats de la simulation seront également utilisés pour tester et améliorer les méthodes et les algorithmes utilisés par les observateurs pour extraire les informations physiques de leurs données. Une base de données existante, dans laquelle les résultats des simulations sont disponibles, sera développée.

See all projects

Developing instruments

picto 4 Instrumentation

See all projects

Modelling the Universe

picto 5 Modelisation

Magmist

Du milieu interstellaire diffus aux étoiles. 

From diffused interstellar medium to stars.

 

Comprendre la formation des étoiles reste l'un des plus grands défis de l'astronomie moderne. Dans ce domaine, les progrès ont été limités pour deux raisons principalement : 

  • l'énorme dynamique des échelles spatiales et temporelles pertinentes
  • la grande variété et de la non-linéarité des processus physiques impliqués dans la formation des étoiles.


Le but de ce projet est de fournir une image complète et cohérente du processus de formation des étoiles en suivant de manière autoconsistante l'évolution de la matière interstellaire depuis le gaz très diffus jusqu'aux proto-étoiles.


Ce projet poursuit deux objectifs :

  1. parvenir à une compréhension globale du processus de formation des étoiles, en particulier en élucidant le lien entre les propriétés physiques du milieu interstellaire à grande échelle et les caractéristiques des proto-étoiles, telles que leur masse, leur magnétisation et leur moment angulaire ; 
  2. fournir une meilleure compréhension de la structure, de la nature et du rôle du champ magnétique et de la turbulence des parties diffuses aux parties denses du milieu interstellaire.

Les moyens utilisés

Ceci sera réalisé en effectuant une série de simulations numériques magnétohydrodynamique (MHD*) lourdes avec un code de raffinement de maillage adaptatif tout en subdivisant le problème en trois étapes majeures, à savoir la formation de nuages moléculaires à grande échelle, la formation de noyaux de formation d'étoiles et l'effondrement des noyaux protostellaires. En particulier, l'impact du champ magnétique et les processus radiatifs seront traités de manière autoconsistante en utilisant des schémas appropriés.

A chaque étape, des comparaisons avec les modèles analytiques et les observations seront effectuées en utilisant des modèles existants ou en développant de nouveaux modèles et en calculant des observations synthétiques. Les résultats de la simulation seront également utilisés pour tester et améliorer les méthodes et les algorithmes utilisés par les observateurs pour extraire les informations physiques de leurs données. Une base de données existante, dans laquelle les résultats des simulations sont disponibles, sera développée.

See all projects

Knowledge management of data archives

picto 6 Data

HESS

Hess

H.E.S.S.

Hess

 

Exploring the High Energy gamma ray sky

H.E.S.S   stands for "High Energy Stereoscopic System". This telescope system been designed and built by a large international collaboration which includes the DAPNIA as a member. This instrument is dedicated to the observation of high energy gamma ray sources with energies above a few tens of GeV.   The interaction of these very high energy gamma rays with the upper atmosphere creates a faint flash of blue light called "Cherenkov emission". This very fast (a few nanosecond) flash of light can be observed from the ground. Surveying the sky in the TeV energy range, which is observed by astrophysicists only since last two decades, allows the get an insight into the origin of cosmic rays and to study the acceleration of cosmic rays in various astrophysical objects such as supernovae remnants or active galactic nuclei.

The HESS experiment is located in NAMIBIA, on the Gamsberg highlands (latitude 23° 16' south, longitude 16° 30' east), at an altitude of 1800 m above sea level. It was named after a famous austrian physicist, Victor Hess (1883-1964),  who was awarded the Nobel price in physics in 1936 for discovering cosmic rays.
The HESS apparatus consists in four 12 meter telescopes at the corners of a square with 120 meter sides. Each of these telescopes has a camera at his focus.The camera are large arrays of 960 photomultipliers sensitive to blue light. These photomultipliers have a very fast response time, of the order of one nanosecond.
The sensitivity of HESS (the power to detect faint sources) is 10 times better than that of previous experiments (WHIPPLEHEGRA, CAT) with an energy threshold of 100 GeV.

See all projects

Job

Public

picto-directHeadlines

Contact