<u>Heavy Absorption in AGNs</u> <u>and Simbol-X</u>

Massimo Cappi (IASF-CNR, Bologna)

Outline:

- i) Type-II AGNs
- ii) Semi-relativistic outflows in (RQ)AGNs

General framework

Among the most important results, in recent years, in the field of extragalactic astronomy, has been the realization that most (if not all) galaxies host a SMBH in their center; (e.g. review by Kormendy & Richstone, '95, ARAA)

The two topics of this talk address two important open issues:

- i) why (only) some galaxies are active?
- ii) we know there must be a fundamental link between (nuclear) SMBH and (stellar) host galaxy, but what is this link?

 $\mathcal{M}_{bh} \sim 6^4$ Magorrian et al. '98 Tremaine '02 Gebhardt '02 100 200 ...etc $L_{\rm B}({\rm bulge})/L_{\odot}$ (km/s)

Type-II AGNs: (1/2)

Take a sample of nearby galaxies in the sky...not only they have SMBHs, but:

- \Rightarrow >40% will show nuclear (non-stellar) activity: LINERs and Seyferts
- \implies >(4/5)th are classified as type-II (typeI/typeII=1/4)! (Ho et al. '99,'00)

Type-II AGNs: (2/2)

X-ray surveys of nearby Seyfert Galaxies \Rightarrow

- \Rightarrow X-ray surveys of nearby Seyferts demonstrate that most (>50%) nearby AGNs are heavily (>10²⁴ cm²) absorbed
- \Rightarrow Type-II AGNs are the dominant population of AGNs (at z=0, see G. Hasinger's talk, tomorrow, for the case of more distant AGNs and contribution to the XRB)

BeppoSAX spectra of 3C 273 and Mkn 3

Simbol-X should be ~10-100 times more sensitive than BeppoSAX

Simbol-X and Type-II AGNs: (2/3) Simulations

I use the "archetypical" Sey2 galaxy $Mkn3 \Rightarrow It$ is bright (not brightest!) but standard spectrum model=soft-scattered + heavily absorbed direct component + reflection component + FeK line (from transmission+reflection)

 $\mathcal{F}(2-10)=5\chi 10^{-12} \text{ cgs; } \mathcal{F}(10-100)=10^{-10} \text{ cgs; } \mathcal{E}\chi p.=100 \text{ ks}$ $\implies 10^5 \text{ cts in sdd and } 5\chi 10^4 \text{ cts in CZT}$

Simbol-X and Type-II AGNs: (3/3) Simulations

 \Rightarrow R and HighEcut constrained within 10% (even with HighEcut=100 keV)

If scale down Exp. by factor of 10, still 10000+5000 counts \Rightarrow timing possible on R and HighEcut \Rightarrow (see Laura's and Petrucci's talks for it's astrophysical importance)

If scale down 2-10 keV flux by factor of 100, still 1000+500 counts \Rightarrow larger sample and/or extension to lower-luminosities is possible (better than Risaliti et al., and Panessa et al.) \Rightarrow compare accretion physics at high and low luminosities

ii]Semi-relativistic outflows in (RQ)AGNs: (1/2)

Recent XMM-Newton and Chandra observations

 \Rightarrow massive, high velocity and highly ionized outflows in several RQ AGNs/QSOs

mass: comparable to Eddington accretion rate

velocity: at least ~0.1-0.2 c

Semi-relativistic outflows in (RQ)AGNs: (2/2)

XMM-Newton observation of quasar PDS456 (Reeves et al. 2003)

$$\Rightarrow$$
 Gamma~2; \mathcal{N}_{warm} ~10²⁴ cm²; log ~ 2.5

With outflow v=0.15c

Without outflow

Simbol-X and semi-relativistic outflows in AGNs:

Simulations of PDS456:

Edges at E~7.1-9.0 keV and v_{out} ~ 0.1-0.5c

$$\Rightarrow$$
 \mathcal{E}_{obs} ~ 8-14 keV

 $\mathcal{F}(2-10)=10^{-11} cgs \Longrightarrow \mathbf{T}$ within 5-10%, DeltaE<Eres.

 $\mathcal{F}(2-10)=10^{-12} cgs \Longrightarrow \tau$ within 20-30%, DeltaE~Eres.

 \Rightarrow Possible to constrain Nh, , v of outflow

Studying massive outflows is of fundamental importance to understand feedback SMBH-host galaxy (see e.g. King and Pounds 2003) and physics of launching/acceleration mechanism (that may also lead to relativistic jets in RLAGNS)

v/c=0 0.1 0.2 0.3 0.4

Magnetic Tower by Kato et al. 2003

FIG. 3.— Perspective view of magnetic fields lines in Phase I of Model A. Thick red (or thin white) lines indicate magnetic field lines which are anchored to the innermost (somewhat outer) zones at (r,z) = (1,1.5) [(r,z) = (56,10)], respectively. Thick green lines denote the streamlines of velocity vectors integrated from (r,z) = (8.5,7), whereas the color bar indicate the velocity. Light-blue shaded region indicate the isovolume of the density $(\rho = 0.025,\rho_0)$. Accumulated toroidal fields emerging from the disk produce a magnetic tower, thereby driving an MHD jet. Jet material is surrounded by toroidal magnetic fields, whereas poloidal (vertical) fields dominate inside the jet.

Summary

⇒ fundamental for understanding launching mechanism and

galaxy.

I illustrated two scientific topics of major interest nowadays, that Simbol-X could address/tackle with great potential

with first-ever timing possible

possibly missing link between SMBH and host

Type-II $AGNs \Rightarrow$ detailed modelling of R and High Ecut for brightest type-II AGNS⇒ Nh measurements on larger, and/or farther, and/or to lowerluminosity sample than before \Rightarrow compare AGNs to LLAGNs to understand why not all galaxies are active *Massive outflows* ⇒ detailed modelling of intensity, energy and frequency of these features

The key potential offered by Simbol-X, in addressing both these topics, is the unprecedented throughput between 4-40 keV...